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The unsteady deformation of cylindrical solids is investigated using the dynamic theory of elasticity. Special cases of the 
general solution are pointed out. Numerical results are presented which reflect the specific feature of the stressed state of 
an infinitely long thick-walled cylinder, which is subjected to plane nonaxi-symmetrical loading. The method of investigating 
unsteady wave processes in cylindrical solids is similar to that described previously [1-3]. © 1998 Elsevier Science Ltd. All rights 
reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  R E L A T I O N S  
O F  G E N E R A L  F O R M  

Consider, in the general case, an isotropic elastic solid in cylindrical coordinates (r, 0 z), bounded by cylindrical 
surfaces r = Ro and r := Rt, the planes z = 0 and z = z0 and the half-planes 0 = 0 and 0 = 00 (R0 ~< r ~< R1; 
0 <~ z ~ z0; 0 ~< 0 ~< 0o). We will assume the system of initial conditions to be zero. 

When there are no mass forces, the Lam6 equations, which describe the motion of a uniform isotropic elastic 
medium, are equivalenL in circular cylindrical coordinates, to the following system of equations [4] 

A _ _  1 ~2to 1 i)2~a q,-~---~--, A V = = ~ T  a----~--, ix=l ,2  (1.1) 

u = grad tO + rot(wle z) + rot rot(¥ 2ez ) (1.2) 

where u is the displacement vector, tO, W~, W2 are the scalar potentials of the displacements, ~ is the unit vector of 
the Z axis, and a and b are the velocities of propagation of longitudinal and transverse deformation waves in the 
elastic medium, respectively. 

In the problem of pulsed deformation of a cylindrical solid considered, the solution of the wave equations (1.1) 
are sought in the form of double expansions in axial and angular coordinates (summation is carried out over n 
and k from zero to infinity) 

to = ]~ ROnl~(r,t) wn(O)v k (Z) 

Wl = ~. Rl (r,t) I dwn(O) .. ~n "-~ UktZJ (1.3) 

1 dVk(Z) 
= ER k(r,t) w.(e) 

v k dz 

P'a =nlt lO0,  vk =k~lzo 

Here wn(O), Ok(Z) are known functions of the corresponding coordinates while R~k(r, t), (13 = 0, 1, 2) are to be 
determined. Specific expressions for the functions wn(O), Ok(Z ) will be derived later. 

Expansions (1.3) are similar to those given in [5]. 
Substituting expansions (1.3) into (1.2) we obtain formulae for the components of the displacement vector. 
On the end surfaces of a cylindrical panel, when the coordinate functions Wn and u k are chosen in the form 

w n : cos PnO, ok = cos vG (1.4) 

the following boundaq, conditions are satisfied 
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aze=0,  o : r=0 ,  u..=0 when z = 0 , z  0 

G0-z--'--0, O'Or.~0, //0=0 when O=0, O0 (1.5) 

If we choose them in the form w, = sin ~t,0, t)k = sin vkz, the following conditions must be satisfied 

~ = 0 ,  ur=O, uo=0  when z=0 ,zo  

oo=0 ,  ur=O, u-=O when O=O,O 0 

Henceforth we will confine ourselves to the form of the functions w, and v~ as given by (1.4) and, correspondingly, 
the boundary conditions on the ends (1.5). 

The boundary conditions on the cylindrical surfaces can be realized in two forms. When the boundary stresses 
are specified we have the following expressions 

o , ( , % , e , z )  = Fl(O,z,t), o~(rl,o,z,t)= F4(O,z,t) 

OrO(RO,O,z,t) = F2(O,z,t), Oro(Rl,O,z,t) = Fs(O,z,t) (1.6) 

ffrz(R0,O,z,t) = F3(O,z,t ), ffrz(Rl,O,z,t)= F6(O,z,t) 

where FI(0, z, ,~) - F6(0, z, t) are known functions. 
When the boundary conditions are specified in terms of displacements, similar relations must be satisfied. 
When the functions w~ and uk are chosen in the form (1.4), expansions (1.3) become double Fourier series in 

the variables 0 and z. 
To satisfy bo~andary conditions (1.6), the functions Fj(0, z, t) must also be expanded in similar Fourier series. 

2. F U N D A M E N T A L  R E L A T I O N S  I N  L A P L A C E  T R A N S F O R M  S P A C E  

To proceed further in constructing the solution we need to determine the functions RCnk which occur in (1.3). To 
do this, we write the wave equations (1.1) in Laplace transform space, denoting the transform by the superscript 
L. Substituting 1the representations for ¢p, V1 and ~2 from (1.3) into the equations obtained and taking (1.4) into 
account, we obtain modified Bessel equations in Rn~ (13 = 0, 1, 2). Their general solutions can be written as follows: 

R,~ = a~a'(S)ltt . (r(v 2 + $21c~)~)+ B~kL(s)Kit . (r(v 2 + $21c~) y2) (2.1) 

1~=0, 1,2; co=a, Cl=C2=b 

H e r e A ~ ( S )  and B~(S )  are arbitrary functions of the transformation parameter S, Ix(x) is the modified Bessel 
function of imaginary argument with index ~ and Kx(x) is the MacDonald function. 

3. T H E  F U N D A M E N T A L  R E L A T I O N S  IN I N V E R S E - T R A N S F O R M  S P A C E  

We will now transfer to inverse-transform space. To do this we use the following formulae [6] 

lla((S 2 +y2)~) (2x)~(S2  +,y2)-It/2e-S = 

=LI~l~2-~t(2t-t2)ttl2-114l~t ~(~'(2t-t2)~2), 0 < t < 2  

[0 ,  - t > 2  

eXSKtt(x(S 2 + a 2 )  y2) = 

(S 2 +a2) t  t/2 

(3.1) 

'Jill 
R e l x > l / 2 ,  larq~l < ~  

where Jp(x) is the Bessel function of the first kind with index p. 
Using formulae (3.1) and (3.2), and also certain standard rules of the operational calculus, we obtain expressions 

for the functions R]~,k (13 = 0, 1, 2) in inverse-transform space 
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R~nk =Hl t -  Rl -rlt-(Rtir)lcfJ A~k(~)h~lnlr't-RI ) 0 ~ cl3 

el~ B~ ('C)glt" r,t- -'c d't 
c~ 

where we have used the following notation 

131 t I t h~tn (r't)=~ ""  (r,'c)dz, g~,,(r,t)=~ g~n (r,z)d'~ 

H(t) is the Heaviside function, and the quantities cl3 are described in (2.1), where 

hu~ n (r, t )= 0, 
2r 

t > ~  
cl3 

h~n (r,t) = V~ -Ix" r I-~n (tc~) Ixn / 2 - ~  × 

x ( 2 r -  tcf~) lan / 2 - ~  la" - ~  (V k (tCl ~)~ ( 2 r -  tc~)~ ), 

g n (r,t) = V 

× r - ~  {t2c~ + 2rt)  ~ 12 -I 14 .l~. _ 112 (vk <t2c~ + 2rtc~ )~) 

0 < t <  2r  
cl~ 

(3.3) 

4. D E R I V A T I O N  O F  T H E  S Y S T E M  O F  I N T E G R A L  E Q U A T I O N S  

We substitute (3.3) into the expressions obtained for the components of the displacement vector, and we substitute 
the latter into the boundary conditions (1.6). Relations (1.6), after separating the coordinates 0 and z, are then 
converted into a system of six Volterra integral equations in time for the unknown functionsA~k(t), B~'(t) ([3 = O, 
1, 2). We will use a numerical approach to solve these equations, the basic principle of which consists of substituting 
approximating expressions for the required functions into them, of the following form [3] 

B~ A p H, 
p=l p=! 

At,l'1 = H(t - t~_;) - H(t - tp) (4.1) 
~n~ Aj~= const, Bit, = const, tp =p At 

where At is the time step, and t < rn At, m = 1, 2 . . . . .  
Substituting (4.1) into the above integral equations, we obtain a system of algebraic equations, recurrent with 

nk nk respect to the index m, fi)r determining the quantitiesAjm, B ~  (j = 1, 2, 3, m = 1, 2 . . . .  ) which approximate the 
required functions of time. 

Note that the above reduction to a system of algebraic equations using approximations of the required functions 
when analysing Volterra integral equations is one of a variety of methods for the numerical solution of these 
equations. Approximation (4.1) naturally defines the sudden change in the stresses which develop in an elastic 
solid when pulsed loads :act on it, and ensures stability of the numerical solution of the integral equations with 
continuous or integrable kernels. 

Converting the formulae obtained for the coefficients of expansion of the displacements and stresses, using 
approximations (4.1), we obtain relations convenient for numerical realization. 

5. D I F F E R E N T  V E R S I O N S  O F  T H E  D E F O R M A T I O N  
O F  C Y L I N D R I C A L  S O L I D S  

Version 1. Using the above formulae we can calculate the effect of an arbitrary pulse on a thick-walled cylindrical 
panel. 

Moreover, special cases, defined by specific values of n and k in (1.3) for the displacement potentials, are of 
particular interest. 
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. ,  

! 

-! 

! 
~z 

o .4,'-I-  
L.-:] ~ - " "  - ~ . . j  v b  

-I 

Fig. 1. 

Version 2. Suppose all the coefficients in series (1.3) are equal to zero, apart from those corresponding to n = 
0 and k = 0. As follows from the formulae for the expansions of the displacement vector in double Fourier series, 
this case corresponds to a purely radial shift u °° -~ u = OR°~&, which depends only on the radial coordinate and 
time. This case is equivalent to plane axisymmetric deformation of a closed circular cylindrical layer. 

Version 3. Assume that only coefficients with subscripts k = 0 and n ~ 0 in (1.3) are non-zero. Then Uz =- 0, 
while the remaining components  of the displacement vector are independent  of the z coordinate. This case is 
equivalent to plane non-axisymmetric deformation of a closed circular cylindrical layer. 

Version 4. The case when coefficients with subscripts n = 0 and k * 0 are non-zero corresponds to u0 ---- 0, while 
the remaining components are independent of the variable 0. This version corresponds to axisymmetric deformation 
of a closed circular cylindrical layer of finite length. 

6. N U M E R I C A L  R E S U L T S  

We will give numerical results for the plane non-axisymmetric deformation of a thick-walled cylinder, 
corresponding to the case when the boundary stresses are specified on the boundary surfaces (Version 3). We 
will assume that in series (1.3) coefficients with subscripts n = 2 and k = 0 are non-zero. Figure 1 shows the 
t ime-dependence of the dimensionless stresses o2o, o~ ,  o2o, 2o o z , calculated at a point in the middle of a thick- 
walled cylinder, having the following parameters: R0 = 0.09 m, R 1 = 0.105 m, E = 2.058 x 10" N/m 2, v = 0.3 and 

3 p = 7.8 x 10 a kg /m,  where E, v and p are constants of the material. 
It is assumed that the external boundary surface is load-free, while the internal surface is subjected to a finite 

impulse or radial load: o2°(R0, t) = -a0H(o~ 0 - t), o~(R0, t) = 0, where co o = (R1 - Ro)/a (the corresponding results 
20 2O are represented by the continuous curves), or a tangential load o (R0, t) = 0, o~0(R0, t) (the dashed curves). Along 

the horizontal t ime axis we have plotted the number  of time steps m: in the first case At = 1.13 x 10 -s s while in 
the second case At = 1.8 x 10 -s s. 

The jumps in the values of the stresses due to the sudden nature of the behaviour of the load and also the 
superposition of deformation waves, reflected from the boundary surfaces of the cylinder, are well tracked. One  
can also see the specific features of the deformation when radial or tangential boundary stresses are specified. 

In conclusion we note that it is possible to extend this method to the solution of problems of pulsed deformation 
of multilayered cylindrical solids. 
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